I=imread('1bmpfile.bmp'); % 读入第一帧作为背景帧
fr_bw = I;
[height,width] = size(fr_bw); %求每帧图像大小
fg = zeros(height, width); %定义前景和背景矩阵
bg_bw = zeros(height, width);
C = 3; % 单高斯模型的个数(通常为3-5)
M = 3; % 代表背景的模型个数
D = 2.5; % 偏差阈值
alpha = 0.01; % 学习率
thresh = 0.25; % 前景阈值
sd_init = 15; % 初始化标准差
w = zeros(height,width,C); % 初始化权重矩阵
mean = zeros(height,width,C); % 像素均值
sd = zeros(height,width,C); % 像素标准差
u_diff = zeros(height,width,C); % 像素与某个高斯模型均值的绝对距离
p = alpha/(1/C); % 初始化p变量,用来更新均值和标准差
rank = zeros(1,C); %各个高斯分布的优先级(w/sd)
pixel_depth = 8; % 每个像素8bit分辨率
pixel_range = 2^pixel_depth -1; % 像素值范围[0,255]
for i=1:height
for j=1:width
for k=1:C
mean(i,j,k) = rand*pixel_range; %初始化第k个高斯分布的均值
w(i,j,k) = 1/C; % 初始化第k个高斯分布的权重
sd(i,j,k) = sd_init; % 初始化第k个高斯分布的标准差
end
end
end
提取码:5nr0
© 著作权归作者所有